Angle Sum Property of Triangle at Algebra Den (2024)

Angle Sum Property of a Triangle says that Sum of all the Angles of the Triangle is always equal to 180°.

For Better understanding of Angle Sum Property, study the following examples :-

Example 1 = Below diagram represent Triangle ABC

Angle Sum Property of Triangle at Algebra Den (1)

In the above diagram, Triangle ABC has
∠ A = 45°
∠ B = 90°
∠ C = 45°

Now as per the Angle Sum Property,
Sum of ∠ A, ∠ B & ∠ C has to be equal to 180°.

Lets Check the property :-
∠ A + ∠ B + ∠ C = 180°
Put the values of all angle and we get:
45° + 90° + 45° = 180°
180° = 180°

since L.H.S = R.H.S
Hence its proved that Sum of all the Angles of the Triangle is always equal to 180°.

Example 2 = Below diagram represent Triangle PQR

Angle Sum Property of Triangle at Algebra Den (2)

In the above diagram, Triangle ABC has
∠ P = 70°
∠ Q = 60°
∠ R = 50°

Now as per the Angle Sum Property,
Sum of ∠ P, ∠ Q & ∠ R has to be equal to 180°.

Lets Check the property :-
∠ P + ∠ Q + ∠ R = 180°
Put the values of all angle and we get:
70° + 60° + 50° = 180°
180° = 180°

since L.H.S = R.H.S
Hence its proved that Sum of all the Angles of the Triangle is always equal to 180°.

How to prove angle sum property of triangle:
There are several methods to prove angles sum property of triangle, but here we have explained three methods only.

Method 1: Prove angle sum property of triangle with the help of protractor
Draw a triangle and measure all its angles with the help of protractor.
Now add the measurement and you will notice that sum of these measurement is equal to 180° (ignore marginal error).
You can try this with few more triangles and you will notice that in all other triangles too; sum of measurement of all the angles is equal to 180°.

Hence, this prove angles sum property of triangle, which says that sum of all the angles of triangle is equals to 180°

Method 2: Prove angle sum property of triangle with the help of exterior angle property.

Before you study this method you are advised to read:
What is Exterior Angle Property of a Triangle ?
What is Linear Pair ?

Draw a triangle ABC and produce BC to D as shown in the following figure:

Angle Sum Property of Triangle at Algebra Den (3)

Mark all the angles of triangles as ∠ 2, ∠ 3 & ∠ 4 as shown in the above figure.
Also, mark exterior angle as ∠ 1 as shown in the above figure.

Now as per Exterior Angle Property which says that exterior angle is equal to sum of interior opposite angles; we get:
∠ 1 = ∠ 4 + ∠ 3 .....(statement 1)

Also, ∠ 1 & ∠ 2 from linear pair, so we get:
∠ 1 + ∠ 2 = 180°

Put the Values of angles ∠ 1 from (statement 1) and we get:
∠ 4 + ∠ 3 + ∠ 2 = 180°
And ∠ 4, ∠ 3 & ∠ 2 all are the angles of triangle ABC.

Hence, Angle Sum Property is proved which says that Sum of all the angles of a triangle are equals to 180°

Method 3: Prove angle sum property of triangle with the principles of parallel lines cut by a transversal
Before you understand this method, you are advised to read:

What is Transversal Line ?
What are the Properties of Transversal ?
What is Linear Pair ?

In the below diagram we have a triangle ABC and we have to prove the angle sum property of triangle i.e. sum of it's angles is equal to 180°
Or we write it as:
∠ 1 + ∠ 2 + ∠ 3 = 180°

Angle Sum Property of Triangle at Algebra Den (4)

Following are the steps to prove Angle Sum Property of Triangle:

  • Draw a line PQ parallel to side BC which passes through the Vertex A (as shown below):

    Angle Sum Property of Triangle at Algebra Den (5)

  • Line PQ is parallel to BC and AB is a transversal, we get:
    ∠ 1 and ∠ 4 are alternative interior (as shown below)

    Angle Sum Property of Triangle at Algebra Den (6)

    And as per the property of transversal, If two parallel lines are cut by a transversal, then pair of alternative interior angles are equal. So we get:
    ∠ 1 = ∠ 4 ..... (Statement 1)

  • Similarly, Line PQ is parallel to BC and AC is a transversal, we get:
    ∠ 2 and ∠ 5 are alternative interior angles (as shown below):

    Angle Sum Property of Triangle at Algebra Den (7)

    And as per the property of transversal, "If two parallel lines are cut by a transversal, then pair of alternative interior angles are equal". So we get:
    ∠ 2 = ∠ 5 ..... (Statement 2)

    Now, you can observe that Angle 3, Angle 4 and Angle 5 lies on the line PQ, thereby forming a Linear Pair, so we get:
    ∠ 4 + ∠ 3 +∠ 5 = 180°

    As proved in statement 1 and 2 above (∠ 4 = ∠ 1 & ∠ 5 = ∠ 2), so we get:
    ∠ 1 + ∠ 3 + ∠ 2 = 180°

    Or we can write it as:
    ∠ 1 + ∠ 2 + ∠ 3 = 180°

    Hence, this proved angle sum property of triangle with the principles of parallel lines cut by a transversal

    Study More Solved Questions / Examples

  • Find the measurement of ∠ A in the following figure:

    Angle Sum Property of Triangle at Algebra Den (8)

  • In a triangle PQR, ∠ P is equals to 50° and ∠ Q & ∠ R are equal. Find measurement of ∠ Q & ∠ R
  • Angles of a triangle are in the ratio of 1:2:1. Find the measurement of all the angles.
  • Angle Sum Property of Triangle at Algebra Den (2024)

    References

    Top Articles
    Latest Posts
    Article information

    Author: Nathanael Baumbach

    Last Updated:

    Views: 6338

    Rating: 4.4 / 5 (75 voted)

    Reviews: 82% of readers found this page helpful

    Author information

    Name: Nathanael Baumbach

    Birthday: 1998-12-02

    Address: Apt. 829 751 Glover View, West Orlando, IN 22436

    Phone: +901025288581

    Job: Internal IT Coordinator

    Hobby: Gunsmithing, Motor sports, Flying, Skiing, Hooping, Lego building, Ice skating

    Introduction: My name is Nathanael Baumbach, I am a fantastic, nice, victorious, brave, healthy, cute, glorious person who loves writing and wants to share my knowledge and understanding with you.